Anmelden

Diese Seite unterstützt Internet Explorer nicht mehr.

https://studium.hs-ulm.de/de/research/PublishingImages/Forschungs-und%20Innovationsmanagement.jpg?RenditionID=5

Intelligente Systeme

Intelligente Systeme

Intelligenten Systeme sind problemlösende Systeme, die sich durch die Fähigkeit auszeichnen, rationale Entscheidungen zu treffen - auch bei komplexer, unvollständiger oder unsicherer Datenlage. Solche intelligenten Systeme werden in der Hochschule an verschiedenen Stellen und in unterschiedlichen Anwendungsgebieten erforscht und entwickelt. 

So beschäftigt sich eine Forschungsgruppe mit Service Robotern, ein Team entwickelt ein Tool zur modellbasierten Sicherheitsanalyse technischer Systeme oder Energienetze werden intelligent gesteuert. Hier wird ein Überblick über die Aktivitäten im Bereich intelligenter Systeme gegeben. 


Servicerobotics

Modellbasierte Sicherheitsanalyse

Smart Grids

Fahrerassistenzsysteme

Industrie 4.0


Ansprechpartner:​

Prof. Marianne von Schwerin

Institut für Informatik
Prof. Christian Schlegel               Servicerobotik und 4.0 Technologien

Prof. Reinhold von Schwerin       Data Science und Maschinelles Lernen

Institut für Energie- und Antriebstechnik
Prof. Gerd Heilscher                   Smart Grids Forschungsgruppe 

Prof. Marc-Oliver Otto               

Prof. Dr. Stephan Schlüter          Statistical analysis

Institut für Medizintechnik und Mechatronik
Prof. Thomas Walter                  Fahrerassistenzsysteme / Sensorik

Institut für Kommunikationstechnik
Prof. Anestis Terzis                     Surround-View

Aktuelle Projekte

Data Literacy und Data Science für den Mittelstand: Qualifizierung und Weiterbildung (DLDS)

Projektleiter: Prof. Dr. Reinhold von Schwerin

Projektlaufzeit: 01.05.2019 31.12.2021

Mittelgeber: Land – MWK / EFRE
Programmname: ESF

Projektbeschreibung:
Ziel des Projekts ist die Ausweitung des Einsatzes von Methodiken im Bereich Künstlicher Intelligenz und Machine Learning v.a. im Bereich des Mittelstandes. Es sollen die Gebiete von Data Engineering über Analytics bis zu Deep Learning betrachtet werden. Dabei sollen die Levels Awareness, Literacy, Practitioner und Scientist adressiert werden. Insbesondere soll über Forschungen zur Erklärbarkeit von KI-Resultaten eine Akzeptanz und besseres Verständnis für KI-Lösungen hergestellt werden. Hierbei werden gut verstandene Lernprozesse in KI-Systemen analysiert und die Entscheidungsvorgänge des maschinellen Lernens klassifiziert, um eine Basis für das Verständnis der Ergebnisfindung von KI-Algorithmen zu legen.


Innovative Exzellenzqualifikation Handwerk DQR 4-7

Projektleiter: Prof. Dr. Reinhold von Schwerin
Projektlaufzeit:
 01.10.2020 30.09.2024

Mittelgeber: 
Bund – BMBF
Programmname: innoVET

Projektbeschreibung:
Die Digitalisierung der Lebens- und Arbeitswelt und speziell das Gebiet des Ambient Assisted Living soll in diesem Projekt voran gebracht werden. Hierbei sind von Seiten der Elektrotechnik programmierbare Steuerungen und insbesondere deren Sicherheit wesentlich. SPS-Integration und Systemvernetzung sowie Safe Automation sind zentrale Inhalte. Im Bereich Digitalisierung sind Data Science Datenbanken und Data Analytics sowie Data Science für IoT und Digitale Geschäftsmodelle wesentlich. Diese Technologien werden orchestriert und für den praktischen Einsatz adaptiert und nutzbar gemacht. Hierzu gehört die Definition von geeigneten Schnittstellen, die Bereitstellung von „ready to use“ Modulen sowie ein Zugang zu modernen Technologien, ohne Algorithmen oder Programmierung im Detail zu kennen.

Weitere Informationen unter www.exzellenz-handwerk.de


Requirement-driven Optimization of System Concept with integrated Model Based Safety Analysis (SysRO)

Projektleiter: Prof. Dr. Rüdiger Lunde
Projektlaufzeit:
 01.11.2018 29.02.2020

Mittelgeber: 
sonstige öffentliche Einrichtung
Programmname: smartflow

Projektbeschreibung:
Im Projekt geht es um die Weiterentwicklung des smartIflow-Ansatzes zur automatisierten Erstellung von Sicherheitsanalyse-Artefakte auf Basis komponentenorientierter Modelle. Insbesondere soll eine neue FMEA-Generierung entwickelt und in die existierende Workbench integriert werden.
Neu daran ist insbesondere die Art des zu Grunde gelegten Modells, da die hier eingesetzten Transitionssysteme bisher nicht für diesen Zweck genutzt wurden.


Dynamisches Innovationssystem der Region Donau-Iller (InnoSÜD)

Projektleiterin: Prof. Dr. rer.nat. Marianne von Schwerin
Projektlaufzeit:
01.01.2018 31.12.2022
Mittelgeber: Bund + Land
Programmname: Innovative Hochschule

Projektbeschreibung:

In InnoSÜD wird ein dynamisches Innovationssystem in der Region Donau-Iller entwickelt, das in der Umsetzung neuer Transferformate seine Stärken aufweist. Es werden vorrangige Zukunftsaufgaben thematisiert, die die Implementierungsfelder Mobilität, Energie, Gesundheit / Biotechnologie und Transformationsmanagement umfassen.
Die THU vertritt die Themenbereiche Energie und Mobilität. Beide Themenfelder umfassen Bereiche, die sich in naher Zukunft stark verändern müssen, wie die Begriffe Energie- und Verkehrswende verdeutlichen. Elektromobilität und automatisiertes Fahren bestimmen die Entwicklungen im Automobilbereich, erneuerbare und dezentrale Energiesysteme sind die Zukunft der Energieversorgung.
Mit ihrer Beteiligung an diesem Innovationsprojekt möchte die THU auf regionaler Ebene diese bedeutsamen technologischen Umbrüche aktiv mitgestalten und verfolgt dabei einen alternativen Ansatz im Bereich des Wissens- und Technologietransfers. Hierfür kommen in InnoSÜD speziell entwickelte Transferformate wie Trialoge oder Innovationszirkel zum Einsatz, um die regionale Wirtschaft, Wissenschaft und Gesellschaft an einen Tisch zu bringen. Auch Reallabore, offene Entwicklungsumgebungen (Open Labs und Open Products) sowie kooperative Promotionen und Personaltausch tragen dazu bei, Ideen für Innovation zu teilen und auf eine breite Basis zu stellen.

Weitere Informationen: www.innosued.de


InnoTeach

Projektleiterin: Prof. Dr. Marianne von Schwerin
Projektlaufzeit: 01.01.2020 - 31.12.2021
Mittelgeber: Land - MWK

Projektbeschreibung:
Im Teilvorhaben an der THU wird das Thema KI aufgegriffen, dieses aufgearbeitet und in Zusammenarbeit mit Unternehmen in Projekten im Masterstudiengang Intelligente Systeme eingesetzt. Es werden dort Lösungsansätze für Fragestellungen im Bereich der künstlichen Intelligenz aus der Wirtschaft erarbeitet und prototypisch umgesetzt. Durch das Projekt soll einer breiten Menge an Studierenden der Kontakt zu Unternehmen der Region ermöglicht werden. Hierzu werden die Transferformate aus dem Projekt InnoSÜD (Innovative Hochschule) weiterentwickelt und auch schon in der Lehre eingesetzt.
zur Projektseite


Architektur zur Gas-Chromatographie

Projektleiter: Prof. Dr. Dirk Bank
Projektlaufzeit: 01.07.2020 - 30.06.2022
Mittelgeber: privat

Projektbeschreibung:
Im Projekt erfolgt die Erforschung und Entwicklung einer Hardware- und der zugehörigen Software-Architektur für den informationstechnischen Anteil von Geräten für die Messung organischer Komponenten in gasförmigen Medien. Die entwickelten Elemente werden prototypisch umgesetzt und evaluiert.


Zukunftsstadt 3

Projektleiter: Prof. Dr. Michael Schlick
Projektlaufzeit:
01.02.2020 - 31.12.2021
Mittelgeber: Stadt Ulm (Bund – BMBF)
Programmname: Zukunftsstadt

Projektbeschreibung:
Aufbauend auf dem in der vorigen Förderphase entstandenen Gatewaynetz der Stadt Ulm soll eine geeignete Sensortechnik entwickelt und ausgerollt werden. Auf Basis der Funktechnik LoRaWAN entsteht eine universelle Erfassungs- und Verarbeitungsplattform von Daten über Luftqualität, Temperatur, Luftfeuchtigkeit, Fahrradmobilität, WiFi-Scanner, Beschleunigungssensor und GPS. Diese Daten sollen analysiert, aufgearbeitet und intelligent weiterverarbeitet werden. Mit geeigneten Methoden des Maschinellen Lernens / KI können dann im Rahmen des Projekts Vorhersagen über die Nutzung der Infrastruktur der Innenstadt gemacht werden. Daraus wird ein Konzept zur besseren Auslastung von Sharing Angeboten im ÖPNV, in der Kombination von Sharing und ÖPNV und von Taxifahrten gemacht.

Abgeschlossene Projekte

Zukunftsstadt 2

Projektleiterin: Prof. Dr. rer.nat. Marianne von Schwerin
Projektlaufzeit:
01.01.2018 31.12.2018
Mittelgeber: Bund – BMBF
Programmname: Zukunftsstadt

Projektbeschreibung:

Die Stadt wird in den Zukunftsbereichen Mobilität, Energie und Vernetzung sowie Wirtschaft, Beschäftigung und Arbeit von verschiedenen Professoren der Hochschule Ulm unterstützt. Hierbei werden die Themen Elektromobilität und alternative Verkehrskonzepte betrachtet genauso wie Energiewende und digitale Transformation. In dieser zweiten Phase der Zukunftsstadt geht es um die Erarbeitung umsetzungsfähiger Konzepte.


Veröffentlichungen

2021

Hwang, Youngseok; Schlüter, Stephan; Choudhury, Tanupriya; Um, Jung-Sup:
Comparative Evaluation of Top-Down GOSAT XCO2 vs. Bottom-Up National Reports in the European Countries,
in: Sustainability 2021, 13(12), MDPI, MDPI, 2021, Seiten 15.
DOI: 10.3390/su13126700
ISSN: 2071-1050

Hwang, Young-Seok; Schlüter, Stephan; Park, Seong-Il; Um, Jung-Sup:
Comparative Evaluation of Mapping Accuracy between UAV Video versus Photo Mosaic for the Scattered Urban Photovoltaic Panel,
in: Remote Sensing 2021, 13(14), MDPI, MDPI, 2021, Seiten 11.
DOI: 10.3390/rs13142745
ISSN: 2072-4292

Hwang,Young-Seok; Schlüter, Stephan; Lee, Jung-Joo; Um, Jung-Sup:
Evaluating the Correlation between Thermal Signatures of UAV Video Stream versus Photomosaic for Urban Rooftop Solar Panels,
in: Remote Sensing 2021, 13(23), MDPI, MDPI, 2021, Seiten 15.
DOI: 10.3390/rs13234770
ISSN: 2072-4292

Liebermann, Simon;  Hwang, YongSeok;  Um, Jung-Sup; Schlüter, Stephan:
Performance Evaluation of Neural Network-Based Short-Term Solar Irradiation Forecasts,
in: Energies 2021, 14(11), 3030, MDPI, MDPI, 2021, Seiten 21.
DOI: 10.3390/en14113030
ISSN: 1996-1073

von Döllen, Andreas; Hwang, YoungSeok; Schlüter, Stephan:
The Future is Colorful – An Analysis of the CO2 Bow Wave and Why Green Hydrogen Can’t do it Alone,
in: Energies 2021, 14(18), 5720, MDPI, MDPI, 2021, Seiten 21.
DOI: 10.3390/en14185720
ISSN: 1996-1073

Bowoo Kim, Dongjun Suh, Marc-Oliver Otto, Jeung-Soo Huh:
A Novel Hybrid Spatio-Temporal Forecasting of Multisite Solar Photovoltaic Generation,
in: Remote Sensing 2021, 13(13), 2605, Special Issue Remote Sensing for Smart Renewable Cities, MDPI, MDPI, 2021, Seiten 20.
DOI: 10.3390/rs13132605
ISSN: 2072-4292

Minjeong Sim, Dongjun Suh, Marc-Oliver Otto:
Multi-Objective Particle Swarm Optimization-Based Decision Support Model for Integrating Renewable Energy Systems in a Korean Campus Building,
in: Sustainability 2021, 13(15): 8660., Special Issue Human-Technology Interaction Sustainable Data Use for Environmental Decision Making;, MDPI, MDPI, 2021, Seiten 18.
DOI: 10.3390/su13158660
ISSN: 2071-1050

YoungSeok Hwang, Jong Wook Roh, Dongjun Suh, Marc-Oliver Otto, Stephan Schlueter, Tanupriya Choudhury, Jeung-Soo Huh & Jung-Sup Um:
No evidence for global decrease in CO2 concentration during the first wave of COVID-19 pandemic,
in: Environmental Monitoring and Assessment 193, Article number: 751, 2021, Springer, Springer Link, 2021, Seiten 15.
DOI: 10.1007/s10661-021-09541-w
ISSN: 0167-6369 / eISSN: 1573-2959

Akharath, Philipp; Altkrüger, Jaqueline; Sahota, Harkiran; Herbort, Volker; te Heesen, Henrik:
Modellierung eines Photovoltaik-Fehlererkennungsansatzes unter Berücksichtigung von maschinellem Lernen,
in: INFORMATIK 2021, Lecture Notes in Informatics (LNI) - Proceedings Series of the Gesellschaft für Informatik (GI) Volume P-314, Gesellschaft für Informatik e.V., 2021, Seiten 251-267.
DOI: 10.18420/informatik2021-021
ISBN: 978-3-88579-708-1 / ISSN 1617-5468

Akharath, Philipp; Altkrüger, Jaqueline; Sahota, Harkiran; Herbort, Volker; te Heesen, Henrik:
Modeling a PV Fault Detection Approach with Regards to Machine Learning,
in: EU PVSec Conference Proceedings, 38th European Photovoltaic Solar Energy Conference and Exhibition, , EU PVSEC Proceedings, 2021, Seiten 1234 - 1237.
DOI: 10.4229/EUPVSEC20212021-5CV.2.20
ISBN: 3-936338-78-7 / ISSN 2196-100X

2020

Müller, Christian; Lunde, Rüdiger; Hönig, Philipp:
Generation of a Failure Mode and Effects Analysis with smartflow,
in: Proceedings of the 30th European Safety and Reliability Conference (ESREL2020), Venice, Italy, 2020,  (Hrsg.), 2020, Seiten 8.
DOI: 10.3850/978-981-14-8593-0, ISBN: 978-981-14-8593-0

Kreuzer, David; Munz, Michael; Schlüter, Stephan:
Short-term temperature forecasts using a convolutional neural network – An application to different weather stations in Germany,
in: Machine Learning with Applications, (Hrsg.), Elsevier, 2020, Seiten 26.
DOI: https://doi.org/10.1016/j.mlwa.2020.100007

Hwang, YoungSeok; Um, Jung-Sup; Hwang, JunHwa; Schlüter, Stephan:
Evaluating the Causal Relations between the Kaya Identity Index and ODIAC-Based Fossil Fuel CO2 Flux,
in: Energies, MDPI, 2020, Seiten 20.
DOI: https://doi.org/10.3390/en13226009

Hwang, YoungSeok; Um, Jung-Sup; Schlüter, Stephan:
Evaluating the Mutual Relationship between IPAT/Kaya Identity Index and ODIAC-Based GOSAT Fossil-Fuel CO2 Flux: Potential and Constraints in Utilizing Decomposed Variables,
in: International Journal of Environmental Research and Public Health 2020, Vol.17,Is.16, MDPI,2020, Seiten 18.
DOI: https://doi.org/10.3390/ijerph17165976, ISSN: 1661-7827 / 1660-4601 (eISSN)

Quicklinks